Studies on the complex
 $\left[\mathrm{Rh}\left\{\sigma, \eta^{5}-7,9-\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{10}\left[\mathrm{C}(\mathrm{H}) \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right]-10\right\}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)\right] ;$
 crystal structure of the compound
 $\left[\mathrm{Rh}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)\left(\eta^{5}-7,9-\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{10}\left[\mathrm{C}(\mathrm{H})\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)\left(\mathrm{PEt}_{3}\right)\right]-10\right)\right]$ *

Justin E. Goldberg and John C. Jeffery
School of Chemistry, The University, Bristol BS8 1TS (UK)

F. Gordon A. Stone
Department of Chemistry, Baylor University, Waco, TX 76798-7348 (USA)

(Received February 10, 1993)

Abstract

Treatment of CO-saturated $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solutions of $\left[\mathrm{NEt}_{4}\right]\left[\mathrm{Rh}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)\left(\eta^{5}-7,9-\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{11}\right)\right]$ with $\left[\mathrm{Mn}\left(\equiv \mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)(\mathrm{CO})_{2}\left(\eta^{5}-\right.\right.$ $\left.\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{Me}\right)\left[\mathrm{BCl}_{4}\right]$ affords the complex $\left[\mathrm{Rh}\left\{\sigma, \eta^{5}-7,9-\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{10}\left[\mathrm{C}(\mathrm{H}) \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right]-10 \mathrm{KCO}\right)\left(\mathrm{PPh}_{3}\right)\right]$. The latter reacts with $\mathrm{K}\left[\mathrm{BH}(\mathrm{CHMeEt})_{3}\right]$ in the presence of $\left[\mathrm{NEt}_{4}\right] \mathrm{Cl}$ to yield $\left[\mathrm{NEt}_{4} \mathrm{IRh}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)\left(\eta{ }^{5}-7,9-\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{10}\left(\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)-10\right)\right]$, and with tertiary phosphines ($\mathrm{L}=\mathrm{PMe}_{3}, \mathrm{PEt}_{3}$, or $\mathrm{PMe}_{2} \mathrm{Ph}$) to give the zwitterionic complexes $\left[\mathrm{Rh}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)\left(\eta^{5}-7,9-\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{10^{-}}\right.\right.$ $\left.\left.\left[\mathrm{C}(\mathrm{H})\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)(\mathrm{L})\right]-10\right\}\right]$. The crystal structure of the product with $\mathrm{L}=\mathrm{PEt}_{3}$ has been determined, thereby firmly establishing the structure of this class of complex. The reaction between $\left[\mathrm{AuCl}\left(\mathrm{PPh}_{3}\right)\right]$ and the species with $\mathrm{L}=\mathrm{PMe}_{3}$ in the presence of TlBF_{4} affords the dimetal compound $\left[\mathrm{RhAu}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{2}\left[\eta^{5}-7,9-\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{10}\left[\mathrm{C}(\mathrm{H})\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)\left(\mathrm{PMe}_{3}\right)\right]-10\right]\left[\mathrm{BF}_{4}\right]\right.$. The NMR spectra of the new compounds are reported, and discussed in relation to their structures.

1. Introduction

The salts $[\mathrm{X}]\left[\mathrm{Rh}(\mathrm{CO})(\mathrm{L})\left(\eta^{5}-7, n-\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{9} \mathrm{R}_{2}^{\prime}\right)\right](\mathrm{I}, \mathrm{X}$ $=\mathrm{NEt}_{4}$, or $\mathrm{N}\left(\mathrm{PPh}_{3}\right)_{2} ; n=8, \mathrm{~L}=\mathrm{CO}$ or $\mathrm{PPh}_{3}, \mathrm{R}^{\prime}=\mathbf{H}$ or Me; $\mathrm{X}=\mathrm{NEt}_{4}, n=9, \mathrm{~L}=\mathrm{PPh}_{3}, \mathrm{R}^{\prime}=\mathrm{H}$) $\left[1^{* *}\right]$ react with a variety of metal complexes to yield products in which a carborane rhodium fragment is σ bonded to another metal atom (Mn, Re, Co, Rh, Ir, Pt, Cu, or Au) with its attendant ligands [2]. However, reactions between the reagents $[\mathrm{X}]\left[\mathrm{Rh}(\mathrm{CO})(\mathrm{L})\left(\eta^{5}-7,8-\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{9}-\right.\right.$ $\left.\left.\mathrm{R}_{2}^{\prime}\right)\right]$ (Ia-d) and the manganese compounds $[\mathrm{Mn}(\equiv \mathrm{CR})$ -$\left.(\mathrm{CO})_{2}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{Me}\right)\right]\left[\mathrm{BCl}_{4}\right] \quad\left(\mathrm{R}=\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right.$ or $\left.\mathrm{C}_{6} \mathrm{H}_{3} \mathrm{Me}_{2}-2,6\right)$ followed an unexpected course, affording the mononuclear rhodium complexes $\left[\operatorname{Rh}\left(\sigma, \eta^{5}-7\right.\right.$, $\left.\left.8-\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{8}[\mathrm{C}(\mathrm{H}) \mathrm{R}]-10-\mathrm{R}_{2}^{\prime}-7,8\right\}(\mathrm{CO})(\mathrm{L})\right] \quad\left(\mathrm{R}=\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-\right.$

[^0]4, $\mathrm{R}^{\prime}=\mathrm{H}, \mathrm{L}=\mathrm{PPh}_{3}$ (IIa); or CO (IIb); $\mathrm{R}=\mathrm{C}_{6} \mathrm{H}_{3} \mathrm{Me}_{2^{-}}$ $2,6, \mathrm{R}^{\prime}=\mathrm{H}, \mathrm{L}=\mathrm{PPh}_{3}$ (IIc); $\mathrm{R}=\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4, \mathrm{R}^{\prime}=\mathrm{Me}$, $\mathrm{L}=\mathrm{PPh}_{3}$ (IId); or CO (IIe)) [2e, 3], instead of the expected dimetal species in which an alkylidyne group bridges a $\mathrm{Mn}-\mathrm{Rh}$ bond. The formation of the compounds Ila-e probably proceeds via intermediates with metal-metal bonds which facilitate transfer of the alkylidyne group from manganese to rhodium, a process which is evidently followed by insertion of the alkylidyne into the $\mathrm{B}(10)-\mathrm{H}$ bond. The manganese fragment is released as [$\mathrm{Mn}(\mathrm{CO})_{3}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{Me}\right)$], as discussed elsewhere [2e,3].

ObH

	X	L	
la	NEt_{4}	CO	CH
Ib	$\mathrm{N}_{4}\left(\mathrm{Ph}_{3}\right)_{2}$	PPh_{3}	CH
Ic	NEL_{4}	CO	CMe
Id	NEL_{4}	PPh_{3}	CMe

In this paper we report the reaction between $\left[\mathrm{NEt}_{4}\right]\left[\mathrm{Rh}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)\left(\eta^{5}-7,9-\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{11}\right)\right]$ (Ie) and $\left[\mathrm{Mn}\left(=\mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)(\mathrm{CO})_{2}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{Me}\right)\right]\left[\mathrm{BCl}_{4}\right]$, as well as some reactions of the product $\left[\operatorname{Rh}\left\{\sigma, \eta^{5}-7,9-\right.\right.$ $\left.\left.\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{10}\left[\mathrm{C}(\mathrm{H}) \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right]-10\right\}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)\right]$ (IIf). The latter complex is a polytopal isomer of Ha, having a 2,1,7- $\mathrm{RhC}_{2} \mathrm{~B}_{9}$ icosahedral core structure, as opposed to the $3,1,2-\mathrm{RhC}_{2} \mathrm{~B}_{9}$ cage frameworks in the species Па-е.

2. Results and discussion

Treatment of CO -saturated $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solutions of $\mathbf{I e}$ with $\left[\mathrm{Mn}\left(\equiv \mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)(\mathrm{CO})_{2}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{Me}\right)\right]\left[\mathrm{BCl}_{4}\right]$ gave, after column chromatography on alumina, orange crystals of [$\mathrm{Rh}\left[\sigma, \eta^{5}-7,9-\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{10}\left[\mathrm{C}(\mathrm{H}) \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right]-\right.$ $\left.10\}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)\right]$ (IIf). As observed previously [2e, 3], the $\mathrm{Mn}(\mathrm{CO})_{2}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{Me}\right)$ fragment is eliminated as $\left[\mathrm{Mn}(\mathrm{CO})_{3}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{Me}\right)\right]$. Hence the reaction is carried out in the presence of CO to increase the yield of IIf.

Compound IIf was characterised by the data given in Tables 1-3. The spectroscopic properties are similar to those of IIa and are entirely consistent with the structure shown. Thus the presence of the $B C(H)$ $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4$ group is revealed in the ${ }^{11} \mathrm{~B}-\left({ }^{1} \mathrm{H}\right)$ NMR spectrum (Table 3), in which a diagnostic resonance corresponding in intensity to one boron atom is seen at $\delta 8.8$, a value almost identical with that ($\delta 8.7$) found in the spectrum of $\left[\mathrm{NEt}_{4}\right]\left[\mathrm{Mo}\left(\sigma, \eta^{5}-7,8-\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{8}\left[\mathrm{C}(\mathrm{H}) \mathrm{C}_{6}-\right.\right.\right.$ $\left.\mathrm{H}_{4} \mathrm{Me}-4\right]-10-\mathrm{Me}_{2}-7,8 \mathrm{l}(\mathrm{CO})_{3}$], the anion of which also has a $\mathrm{C}(\mathrm{H}) \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4$ moiety bridging the metal atom and the cage [4]. Interestingly, the ${ }^{11} \mathrm{~B}-\left[{ }^{1} \mathrm{H}\right\}$ NMR resonance for the $B \mathrm{C}(\mathrm{H}) \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4$ group in IIa at δ 17.4 [3], is appreciably more deshielded than in IIf.

TABLE 1. Analytical ${ }^{\text {a }}$ and physical data for the rhodium complexes

Compound	Colour	Yield (\%)	$\nu_{\mathrm{cmax}^{-1}}(\mathrm{CO})^{\mathrm{b}}$	Analysis (\%)		
				C	H	
IIf [Rh($\left.\sigma, \eta^{5}-7,9-\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{10}\left[\mathrm{CCH}(\mathrm{H}) \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right]-10 \mathrm{~K}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)\right]$	orange	83	2022vs	55.9 (55.4)	5.4 (5.3)	
IIId [NEt_{4} IRh(CO) $\left.\left.\left(\mathrm{PPh}_{3}\right) \mathrm{T}^{5}-7,9-\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{10}\left(\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)-10\right]\right]^{\text {c }}$	dark green	97	1923vs	57.6 (58.5)	7.4 (7.2)	
IIIe $\left[\mathrm{NEt}_{4} \mathrm{IRh}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)\left(\eta^{5}-7,9-\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{10}\left[\mathrm{C}(\mathrm{H})(\mathrm{Me})\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)\right]-10\right]\right]$ c,d	red	98 (39)	1921s	59.0 (59.0)	7.3 (7.3)	
IVa [$\left.\mathrm{Rh}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)\left(\eta^{5}-7,9-\mathrm{C}_{2} \mathrm{~B}_{\mathbf{9}} \mathrm{H}_{\mathbf{4}}\left[\mathrm{CO}(\mathrm{H})\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)\left(\mathrm{PMe}_{3}\right)\right]-10\right\}\right]$	green-yellow	92	1927vs	54.5 (54.5)	6.0 (6.0)	
IVb [$\mathrm{Rh}\left(\mathrm{CO}\right.$) $\left.\left(\mathrm{PPh}_{3}\right)\left(\eta^{5}-7,9-\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{10}\left[\mathrm{C}(\mathrm{H})\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)\left(\mathrm{PEt}_{3}\right)\right]-10\right]\right]$	yellow	84	1923vs	55.6 (56.3)	6.5 (6.5)	
IVc [$\left.\mathrm{Rh}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)\left(\eta^{5}-7,9-\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{10}\left[\mathrm{C}(\mathrm{H})\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)\right]-10\right)\right]$	yellow	78	1924vs	57.1 (58.0)	6.0 (5.8)	
V $\left[\mathrm{NEt}_{4} \\| \mathrm{Rh}(\mathrm{COMe})\left(\sigma, \eta^{5}-7,9-\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{10}\left[\mathrm{C}(\mathrm{H}) \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right]-10\right)\left(\mathrm{PPh}_{3}\right)\right]{ }^{\text {c,e }}$	red	98 (59)	1600 mbr	59.0 (59.0)	7.3 (7.3)	
VI [RhAu(CO) $\left.\left(\mathrm{PPh}_{3}\right)_{2}\left(\boldsymbol{\eta}^{5}-7,9-\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{10}\left[\mathrm{C}(\mathrm{H})\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)\left(\mathrm{PMe}_{3}\right)\right]-10\right]\right]\left[\mathrm{BF} 5_{4}\right]$	pale green	98	1972vs	47.9 (48.0)	4.7 (4.6)	

${ }^{\text {a }}$ Calculated values are given in parentheses.
${ }^{\text {b }}$ Measured in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. All spectra show a broad band at $c a .2550 \mathrm{~cm}{ }^{1}$ due to $\mathrm{B}-\mathrm{H}$ absorptions.
${ }^{\text {c }}$ Compound also contains nitrogen. For: IIId 1.9 (1.8%); IIIe and V 1.8 (1.8\%).
${ }^{d}$ Compound formed as an inseparable $2: 3$ mixture with V. Yield quoted is overall value for mixture; figure in parentheses calculated yield for IIIe. Microanalytical data is for the isomer mixture. See text.
e Compound formed as a 3:2 mixture with IIle, see footnote d.

TABLE 2. (footnotes)

${ }^{\text {a }}$ Chemical shifts δ in ppm, coupling constants in Hz , measurements at ambient temperatures in $\mathrm{CD}_{2} \mathrm{Cl}_{2}, \mathrm{R}=\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4$.
${ }^{\mathrm{b}}$ Signals due to BH groups appear as broad unresolved resonances in the range $\delta c a .-2$ to +3 .
${ }^{c}$ Hydrogen-1 decoupled, chemical shifts are positive to high frequency of $\operatorname{SiMe}_{4}(\delta 0.0)$.
${ }^{d}$ Spectrum measured in CDCl_{3}.
${ }^{\mathrm{e}}$ Compound formed as an inseparable $2: 3$ mixture with \mathbf{V}; peaks assigned on basis of integration of ${ }^{1} \mathrm{H}$ and ${ }^{31} \mathrm{P}-\left({ }^{1} \mathrm{H}\right)$ NMR spectra and intensities and shifts of the resonances in the ${ }^{13} \mathrm{C}-\left({ }^{1} \mathrm{H}\right)$ NMR spectrum. See text.
${ }^{1}$ Measured in CDCl_{3} on a sample with $\left[\mathrm{N}\left(\mathrm{PPh}_{3}\right)_{2}\right]^{+}$as the counter-ion.
${ }^{8}$ Peaks marked with an asterisk due to minor isomer.
${ }^{\text {h }}$ Formed as an inseparable 3:2 mixture with IIIe. See footnote e.

TABLE 2. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data ${ }^{\mathrm{a}}$ for the complexes

Compound	${ }^{1} \mathrm{H}^{\text {b }}$ (δ)	${ }^{13} \mathrm{C}^{\text {c }}$ (δ)
IIf	0.71 [s, $\left.1 \mathrm{H}, \mathrm{CH}\left(\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{10}\right)\right], 2.17$ (s, 3H, Me-4), 2.88 $\left[\mathrm{s}, 1 \mathrm{H}, \mathrm{CH}\left(\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{10}\right)\right], 6.37[\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{BC}(H) \mathrm{R}], 6.80$ $-7.90\left(\mathrm{~m}, 19 \mathrm{H}, \mathrm{Ph}\right.$ and $\left.\mathrm{C}_{6} \mathrm{H}_{4}\right)$	${ }^{\mathrm{d}} 191.1$ [d of d, CO, $J(\mathrm{RhC}) 73, J(\mathrm{PC})$ 22], 141.9 [$\left.\mathrm{C}^{1}\left(\mathrm{C}_{6} \mathrm{H}_{4}\right)\right], 137.3\left[\mathrm{C}^{4}\left(\mathrm{C}_{6} \mathrm{H}_{4}\right)\right], 133.6-128.5$ (Ph and $\left.\mathrm{C}_{6} \mathrm{H}_{4}\right), 80.4[\mathrm{br}, \mathrm{BC}(\mathrm{H}) \mathrm{R}], 54.1,53.0\left(\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{10}\right), 21.5$ (Me-4)
IIId	$1.03\left[\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}\left(\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{10}\right)\right], \mathbf{1 . 2 3}[\mathrm{t}$ of $\mathrm{t}, 12 \mathrm{H}$, $\mathrm{NCH}_{2} \mathrm{Me}, \mathrm{J}(\mathrm{HH}) 7, \mathrm{~J}(\mathrm{NH}) 2$], 2.17 [s, 1H, $\left.\mathrm{CH}\left(\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{10}\right)\right], 2.30(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}-4), 2.45,2.54$ [(AB), $2 \mathrm{H}, \mathrm{BCH}_{2}, J(\mathrm{AB}) 12$], $3.15\left[\mathrm{q}, 8 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{Me}, \mathrm{J}(\mathrm{HH})\right.$ 7], 6.90, $7.10\left[(\mathrm{AB})_{2}, 4 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}, \mathrm{~J}(\mathrm{AB}) 8\right], 7.27-7.39$ ($\mathrm{m}, 15 \mathrm{H}, \mathrm{Ph}$)	198.3 [d of d, CO, $J(\mathrm{RhC}) 93, J(\mathrm{PC}) 21$], 145.0 [$\left.\mathrm{C}^{1}\left(\mathrm{C}_{6} \mathrm{H}_{4}\right)\right], 137.5\left[\mathrm{~d}, \mathrm{C}^{1}(\mathrm{Ph}), J(\mathrm{PC}) 38\right], 134.1$ [d , $\left.\mathrm{C}^{2}(\mathrm{Ph}), J(\mathrm{PC}) 12\right], 132.1\left[\mathrm{C}^{4}\left(\mathrm{C}_{6} \mathrm{H}_{4}\right)\right], 129.4$ [$\mathrm{C}^{2}\left(\mathrm{C}_{6} \mathrm{H}_{4}\right)$], 129.2 [d, $\mathrm{C}^{4}(\mathrm{Ph}), \mathrm{J}(\mathrm{PC}) 2$], 128.2 [$\mathrm{C}^{3}\left(\mathrm{C}_{6} \mathrm{H}_{4}\right)$], 127.9 [d, $\left.\mathrm{C}^{3}(\mathrm{Ph}), J(\mathrm{PC}) 9\right], 53.0[\mathrm{t}$, $\left.\mathrm{NCH}_{2} \mathrm{Me}, J(\mathrm{NC}) 3\right], 45.6,41.7\left(\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{10}\right), 33.7(\mathrm{vbr}$, $\left.\mathrm{BCH}_{2} \mathrm{R}\right), 21.1(\mathrm{Me}-4), 7.8\left(\mathrm{NCH}_{2} \mathrm{Me}\right)$
IIIe ${ }^{\text {e }}$	0.43 [s, 1H, CH $\left.\left(\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{10}\right)\right], 1.23$ [t of $\mathrm{t}, 12 \mathrm{H}$, $\mathrm{NCH}_{2} \mathrm{Me}, \mathrm{J}(\mathrm{HH}) 7, \mathrm{~J}(\mathrm{NH}) 2$], ${ }^{\mathrm{f}} 1.25$ [d, 3H, BCH Me, $J(\mathrm{HH}) 7]^{\mathrm{f}}, 2.00(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}-4), 2.21[\mathrm{~s}, 1 \mathrm{H}$, $\left.\mathrm{CH}\left(\mathrm{C}_{2} \mathrm{~B}_{\mathrm{g}} \mathrm{H}_{10}\right)\right]{ }^{\mathrm{f}}{ }^{\mathrm{s}} 3.06[\mathrm{q}, \mathrm{br}, 1 \mathrm{H}, \mathrm{BCH} \mathrm{Me}, \mathrm{J}(\mathrm{HH}) 7 \mathrm{]}$, $3.11\left[\mathrm{q}, 8 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{Me}, \mathrm{J}(\mathrm{HH}) 7\right], 6.92,7.10\left[(\mathrm{AB})_{2}\right.$, $4 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}, J(\mathrm{AB}) 8$], $7.20-7.38(\mathrm{~m}, 15 \mathrm{H}, \mathrm{Ph})$	198.2 [d of d, CO, $J(\mathrm{RhC}) 92, J(\mathrm{PC}) 21$], 150.8 [$\mathrm{C}^{1}\left(\mathrm{C}_{6} \mathrm{H}_{4}\right)$], 137.4 [d, $\mathrm{C}^{1}(\mathrm{Ph}), J(\mathrm{PC}) 37$], 134.3 [d, $\left.\mathrm{C}^{2}(\mathrm{Ph}), \mathrm{J}(\mathrm{PC}) 12\right], 132.1\left[\mathrm{C}^{4}\left(\mathrm{C}_{6} \mathrm{H}_{4}\right)\right], 129.2$ [C^{2} or $\left.\mathrm{C}^{3}\left(\mathrm{C}_{6} \mathrm{H}_{4}\right)\right], 129.1\left[\mathrm{~d}, \mathrm{C}^{4}(\mathrm{Ph}), J(\mathrm{PC}) 2\right], 128.3$ [C^{2} or $\mathrm{C}^{3}\left(\mathrm{C}_{6} \mathrm{H}_{4}\right)$], 128.0 [d, $\left.\mathrm{C}^{3}(\mathrm{Ph}), J(\mathrm{PC}) 10\right], 52.9$ $\left(\mathrm{NCH}_{2} \mathrm{Me}\right), 46.2,41.8\left(\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{10}\right), 33.7$ [vbr, $\mathrm{BC}(\mathrm{H})(\mathrm{Me}) \mathrm{R}], 23.4,21.0(\mathrm{Me}), 7.7\left(\mathrm{NCH}_{2} \mathrm{Me}\right)$
IVa ${ }^{\text {a }}$	$0.76\left[\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}\left(\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{10}\right)\right], 1.67,{ }^{*} 1.72[\mathrm{~d}, 9 \mathrm{H}, \mathrm{PMe}$, $J(\mathrm{PH}) 13], 2.42$ [d, 3H, Me-4, $J(\mathrm{PH}) 2$], 2.51, * 2.76 [s, $\left.1 \mathrm{H}, \mathrm{CH}\left(\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{10}\right)\right], 4.06$ [d, $\left.1 \mathrm{H}, \mathrm{BC}(H) \mathrm{R}, J(\mathrm{PH}) 18\right]$, 7.04-7.63 (m, 19H, Ph and $\mathrm{C}_{6} \mathrm{H}_{4}$)	196.9 [d of d of d, CO, $J(R h C) 92, J(P C) 21$ and 4], $136.9\left[\mathrm{~d}, \mathrm{C}^{1}\left(\mathrm{C}_{6} \mathrm{H}_{4}\right), J(\mathrm{PC}) 4\right], 136.5$ [d, $\mathrm{C}^{1}(\mathrm{Ph}), J(\mathrm{PC})$ 40], 134.4 [$\left.\mathrm{d}, \mathrm{C}^{2}\left(\mathrm{C}_{6} \mathrm{H}_{4}\right), J(\mathrm{PC}) 7\right], 134.0$ [d, $\mathrm{C}^{2}(\mathrm{Ph})$, J (PC) 12], 132.7 [d, br, $\left.\mathrm{C}^{2}\left(\mathrm{C}_{6} \mathrm{H}_{4}\right), J(\mathrm{PC}) 7\right], 130.3$, 130.0 [br, $\mathrm{C}^{3}\left(\mathrm{C}_{6} \mathrm{H}_{4}\right)$], 129.6 [d, $\left.\mathrm{C}^{4}(\mathrm{Ph}), J(\mathrm{PC}) 2\right], 128.1$ [d, $\left.\mathrm{C}^{3}(\mathrm{Ph}), J(\mathrm{PC}) 10\right], 127.2$ [br, $\left.\mathrm{C}^{4}\left(\mathrm{C}_{6} \mathrm{H}_{4}\right)\right], 45.3$ (vbr, $\left.\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{10}\right), 44.7\left(\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{10}\right), 33.7$ [vbr, $\left.\mathrm{BC}(\mathrm{H}) \mathrm{R}\right], 21.2$, * 19.7 (Me-4), 11.3, * 10.6 [d, PMe, J(PC) 54]
IVb ${ }^{\text {g }}$	$0.75\left[\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}\left(\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{10}\right)\right], 1.10$ [d of d of d, 9 H , $\mathrm{PCH}_{2} \mathrm{Me}, \mathrm{J}(\mathrm{PH}) 17, \mathrm{~J}(\mathrm{HH}) 8$ and $8 \mathrm{]}$, * $1.71(\mathrm{~m}, 3 \mathrm{H}$, $\mathrm{PCH}_{2} \mathrm{Me}$), 1.97 [d of d of $\mathrm{q}, 3 \mathrm{H}, \mathrm{PC} \mathrm{H}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{Me}$, $\left.J\left(\mathrm{H}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right) 20, J\left(\mathrm{H}_{\mathrm{Me}} \mathrm{H}\right) 8, J(\mathrm{PH}) 8\right]$, * $2.14(\mathrm{~m}, 3 \mathrm{H}$, $\mathrm{PCH}_{2} \mathrm{Me}$), 2.24 [d of d of $\mathrm{q}, 3 \mathrm{H}, \mathrm{PCH} \mathrm{H}_{\mathrm{B}} \mathrm{Me}$, $\left.J\left(\mathrm{H}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right) 20, J\left(\mathrm{H}_{\mathrm{Me}} \mathrm{H}\right) 8, J(\mathrm{PH}) 8\right], 2.49$, * $2.59[\mathrm{~s}, 1 \mathrm{H}$, $\left.\mathrm{CH}\left(\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{10}\right)\right], 4.32$ [d, br, $\left.1 \mathrm{H}, \mathrm{BC}(H) \mathrm{R}, \mathrm{J}(\mathrm{PH}) 21\right]$, 6.99-7.58 (m, 19H, Ph and $\mathrm{C}_{6} \mathrm{H}_{4}$)	197.0 [d of d of d, CO, $J(\mathrm{RhC}) 92, J(\mathrm{PC}) 22$ and 4], $136.8\left[\mathrm{~d}, \mathrm{C}^{1}\left[\mathrm{C}_{6} \mathrm{H}_{4}\right), J(\mathrm{PC}) 3\right], 136.5$ [d, $\mathrm{C}^{1}(\mathrm{Ph}), J(\mathrm{PC})$ 40], 134.1 [d, $\mathrm{C}^{2}\left(\mathrm{C}_{6} \mathrm{H}_{4}\right), \mathrm{J}(\mathrm{PC}) 8$], 134.0 [d, $\mathrm{C}^{2}(\mathrm{Ph})$, $J(\mathrm{PC}) 12], 133.0\left[\mathrm{~d}, \mathrm{C}^{2}\left(\mathrm{C}_{6} \mathrm{H}_{4}\right), J(\mathrm{PC}) 8\right], 130.2$ [$\mathrm{C}^{4}\left(\mathrm{C}_{6} \mathrm{H}_{4}\right)$], 129.7 [$\mathrm{d}, \mathrm{C}^{3}\left(\mathrm{C}_{6} \mathrm{H}_{4}\right), \mathrm{J}(\mathrm{PC}) 2$ 2], 129.5 [d , $\mathrm{C}^{4}(\mathrm{Ph}), J(\mathrm{PC}) 2$], 128.5 [d $, \mathrm{C}^{3}\left(\mathrm{C}_{6} \mathrm{H}_{4}\right), J(\mathrm{PC}) 5$], 128.1 [d, $\left.\mathrm{C}^{3}(\mathrm{Ph}), \mathrm{J}(\mathrm{PC}) 10\right], 45.6\left(\mathrm{vbr}, \mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{10}\right), 44.7$ $\left(\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{10}\right), 33.9$ [vbr, $\left.\mathrm{BC}(\mathrm{H}) \mathrm{R}\right], 21.2$, * 19.7 (Me-4), 13.8, * 12.2 [d, $\left.\mathrm{PCH}_{2} \mathrm{Me}, J(\mathrm{PC}) 47\right]$, * 8.5, 6.6 [d, $\left.\mathrm{PCH}_{2} \mathrm{Me}, \mathrm{J}(\mathrm{PC}) 5\right]$
IVc ${ }^{\text {g }}$	* $0.71,0.78\left[\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}\left(\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{10}\right]\right.$] 1.85 , * 2.13 [d, $3 \mathrm{H}, \mathrm{PMe}, \mathrm{J}(\mathrm{PH}) 13]$, * 2.16 [d, 3H, Me-4, J(PH) 3], 2.24, * 2.26 [d, 3H, PMe, J(PH) 13], 2.35 [d, 3H, $\mathrm{Me}-4, \mathrm{~J}(\mathrm{PH}) 3], 2.45\left[\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}\left(\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{10}\right)\right]$, * 3.80, $4.52[\mathrm{~d}, \mathrm{br}, 1 \mathrm{H}, \mathrm{BC}(H) \mathrm{R}, J(\mathrm{PH}) 21], 6.91-7.71$ $\left(\mathrm{m}, 241 \mathrm{I}, \mathrm{Ph}\right.$ and $\mathrm{C}_{6} \mathrm{H}_{4}$)	197.1 [d of $\mathrm{m}, \mathrm{CO}, J(\mathrm{RhC}) 95], 136.7-123.7$ (Ph and $\mathrm{C}_{6} \mathrm{H}_{4}$), 45.9, $44.7\left(\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{10}\right), 38.5$ [vbr, $\left.\mathrm{BC}(\mathrm{H}) \mathrm{R}\right]$, 21.2 (Me-4), 10.1, 9.9 [d x 2, PMe, J(PC) 54$]$
$V^{\text {h }}$	$0.90\left[\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}\left(\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{10}\right)\right], 1.23$ [t of $\mathrm{t}, 12 \mathrm{H}$, $\left.\mathrm{NCH}_{2} \mathrm{Me}, J(\mathrm{HH}) 7, J(\mathrm{NH}) 2\right], 1.86[\mathrm{~s}, 1 \mathrm{H}$, $\mathrm{CH}\left(\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{10}\right)$), 2.10, 2.29 ($\mathrm{s} \times 2,6 \mathrm{H}$, COMe and Me4), $3.11\left[\mathrm{q}, 8 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{Me}, J(\mathrm{HH}) 7\right.$], 4.35 [d, br, 1 H , $\mathrm{BC}(H) \mathrm{R}, J(\mathrm{PH}) 3], 6.61,6.84\left[(\mathrm{AB})_{2}, 4 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right.$, $J(\mathrm{AB}) 8], 7.20-7.38(\mathrm{~m}, 15 \mathrm{H}, \mathrm{Ph})$	243.3 [d of d, $C(\mathrm{O}) \mathrm{Me}, J(\mathrm{RhC}) 32, J(\mathrm{PC}) 13$], 150.3 [d of $\left.\mathrm{d}, \mathrm{C}^{1}\left(\mathrm{C}_{6} \mathrm{H}_{4}\right), J(\mathrm{RhC}) 4, J(\mathrm{PC}) 4\right], 136.6\left[\mathrm{~d}, \mathrm{C}^{1}(\mathrm{Ph})\right.$, $J(\mathrm{PC}) 35], 134.0$ [d, $\mathrm{C}^{2}(\mathrm{Ph}), J(\mathrm{PC})$ 13], 131.4 [$\left.\mathrm{C}^{4}\left(\mathrm{C}_{6} \mathrm{H}_{4}\right)\right], 128.9\left[\mathrm{C}^{4}(\mathrm{Ph})\right], 128.1\left[\mathrm{C}^{2}\right.$ or $\mathrm{C}^{3}\left(\mathrm{C}_{6} \mathrm{H}_{4}\right)$], 127.7 [d, $\left.\mathrm{C}^{3}(\mathrm{Ph}), J(\mathrm{PC}) 9\right], 126.9\left[\mathrm{C}^{2}\right.$ or $\mathrm{C}^{3}\left(\mathrm{C}_{6} \mathrm{H}_{4}\right)$], 57.6 [vbr, $\mathrm{BC}(\mathrm{H}) \mathrm{R}], 52.9\left(\mathrm{NCH}_{2} \mathrm{Me}\right), 41.3$ [d, C(O)Me, J (PC) 3], 39.4, $34.5\left(\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{10}\right), 21.2(\mathrm{Me}-4), 7.7$ $\left(\mathrm{NCH}_{2} \mathrm{Me}\right)$
VI	$1.07\left[\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}\left(\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{10}\right]\right.$], $1.75[\mathrm{~d}, 9 \mathrm{H}, \mathrm{PMe}, \mathrm{J}(\mathrm{PH})$ 13], 2.53 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{Me}-4$), $3.44\left[\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}\left(\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{10}\right)\right]$, 3.67 [d, 1H, BC(H)R, $J(\mathrm{PH}) 22], 7.13-7.57$ (m, 34H, Ph and $\mathrm{C}_{6} \mathrm{H}_{4}$)	194.1 [d of m, CO, $J(\mathrm{RhC}) 76$], 138.3 [d, $\mathrm{C}^{1}\left(\mathrm{C}_{6} \mathrm{H}_{4}\right)$, J (PC) 4], 134.6-127.7 (Ph and $\mathrm{C}_{6} \mathrm{H}_{4}$), 57.9, 51.4 $\left(\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{10}\right), 37.2$ [vbr, $\left.\mathrm{BC}(\mathrm{H}) \mathrm{R}\right], 21.3$ (Me-4), 10.6 [d, PMe, J(PC) 54]

This difference must be associated with the different core structures in the two compounds, viz., 2,1,7$\mathrm{RhC}_{2} \mathrm{~B}_{9}$ versus $3,1,2-\mathrm{RhC}_{2} \mathrm{~B}_{9}$. That the peak in the ${ }^{11} \mathrm{~B}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of IIf at $\delta 8.8$ is due to the boron nucleus of the $B C(H) \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4$ fragment was confirmed by the observation that the signal remained a singlet in a fully coupled ${ }^{11} \mathrm{~B}$ spectrum, whereas all the other resonances in the range $\delta 0.5$ to -17.9 became doublets [$J(\mathrm{HB}) c a .140 \mathrm{~Hz}$] in accord with these signals being due to cage BH groups.

The formula of IIf is depicted with the $\mathrm{C}(\mathrm{H}) \mathrm{C}_{6}{ }^{-}$ $\mathrm{H}_{4} \mathrm{Me}-4$ group attached to $\mathrm{B}(10)$ rather than to the unique $\mathrm{B}(8)$ atom which separates the two carbons in the open pentagonal face of the cage ligating the rhodium. Although there is no firm NMR evidence for this assignment, the substantial difference in chemical shifts ($\delta 0.71$ and 2.88) in the ${ }^{1} \mathrm{H}$ NMR spectrum (Table 2) of the two inequivalent cage CH vertices does suggest the less symmetrical arrangement with one CH vertex adjacent to the $\mathrm{BC}(\mathrm{H}) \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4$ group and the other separated from it by a BH group. That this structural assignment for IIf is correct is strongly supported by the results of the X-ray diffraction study of a derivative, described below.

The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of IIf also confirmed the presence of the $\mathrm{BC}(\mathrm{H}) \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4$ group with a broad singlet at $\delta 6.37$ in the former spectrum for the $\mathrm{BC}(H)$ proton, and a broad resonance in the latter spectrum at $\delta 80.4$ for the $\mathrm{BC}(\mathrm{H})$ carbon nucleus. The broadness of both peaks is attributed to unresolved ${ }^{11} \mathrm{~B}-{ }^{1} \mathrm{H}$ and ${ }^{11} \mathrm{~B}-{ }^{13} \mathrm{C}$ coupling, respectively. In the ${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum the resonance for the CO ligand occurs as the anticipated doublet of doublets at $\delta 191.1$ [$J(\mathrm{RhC}) 73, J(\mathrm{PC}) 22 \mathrm{~Hz}$], and the signals for the two inequivalent cage CH vertices are seen (measured in CDCl_{3} rather than $\mathrm{CD}_{2} \mathrm{Cl}_{2}$) at δ 54.1 and 53.0.

The ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of IIf shows a single broad doublet [$\delta 32.0, J(\mathrm{RhP}) 145 \mathrm{~Hz}$] at room temperature. This same pattern persists in the spectrum measured at $-70^{\circ} \mathrm{C}$, indicating the presence of only one species in solution and the absence of fluxionality. This is in marked contrast with compounds IIa and IId which show a duplication of NMR peaks in accord with an equilibrium between two diastereoisomers. This behaviour is attributed to the chiral $\mathrm{C}(\mathrm{H}) \mathrm{R}$ fragments being able to adopt two orientations relative to the $\mathrm{Rh}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)$ moiety, with the PPh_{3} and R groups

TABLE $3 .{ }^{11}$ B and ${ }^{31}$ P NMR data ${ }^{a}$ for the complexes

Compound	${ }^{11} \mathrm{~B}^{\mathrm{b}}$ (δ)	${ }^{31} \mathrm{P}^{\mathrm{c}}$ (δ)
IIf	$\begin{aligned} & 8.8(\mathrm{~s}, 1 \mathrm{~B}, \mathrm{BCHR}), 0.5(1 \mathrm{~B}),-10.4 \\ & (2 \mathrm{~B}),-13.8(2 \mathrm{~B}),-17.9(3 \mathrm{~B}) \end{aligned}$	32.0 [d, br, PRh, J(RhP) 145]
IIId	-0.1 (s, 1B, BCHR), -11.9 (1B), -12.9 (1B), -14.9 (2B), -21.1 (1B), -25.2 (2B), -28.8 (1B)	35.7 [d, PRh, J (RhP) 164]
IIIe ${ }^{\text {d }}$	$3.0[\mathrm{~s}, 1 \mathrm{~B}, \mathrm{BC}(\mathrm{H})(\mathrm{Me}) \mathrm{R}],-11.6$ to -28.4 (vbr, 8B)	36.1 [d, PRh, J(RhP) 166]
IVa ${ }^{\text {e }}$	* $-4.1,-5.2$ (s, 1B, BCHR), -13.1 (1B), -14.5 (2B), -16.8 (1B), -22.9 (1B), -23.7 (1B), -25.9 (1B), -26.8 (1B)	36.5 [d, br, PRh, J(RhP) 168], * 26.6, 25.6 (s, PMe_{3})
$17 b^{\text {e }}$	$-5.0, *-6.8(\mathrm{~s}, 1 \mathrm{~B}, \mathrm{BCHR}),-13.1$ (1B), -14.4 (2B), -16.9 (1B), -22.8 (1B), $-23.7(1 \mathrm{~B}),-25.8(1 \mathrm{~B}),-26.6$ (1B)	$\begin{aligned} & 38.5, * 38.4\left(\mathrm{~s}, \mathrm{PEt}_{3}\right), 36.4 \\ & {[\mathrm{~d}, \mathrm{vbr}, \mathrm{PRh}, J(\mathrm{RhP}) 164]} \end{aligned}$
IVe ${ }^{\text {e }}$	* $-3.7,-5.1$ (s, 1B, BCHR), -13.1 (1B), -14.6 (2B), -16.8 (1B), -22.9 (1B), -23.7 (1B), -25.9 (1B), -26.8 (1B)	36.3 [d, br, PRh, J (RhP) 164], * 25.9, 24.4 (s, $\mathrm{PMe}_{2} \mathbf{P h}$)
$\mathrm{V}^{\text {f }}$	$\begin{aligned} & 3.0(\mathrm{~s}, 1 \mathrm{~B}, \mathrm{BCHR}),-11.6 \text { to }-28.4 \\ & (\mathrm{vbr}, 8 \mathrm{~B}) \end{aligned}$	30.2 [d, PRh, J(RhP) 198]
VI	$\begin{aligned} & 0.4(\mathrm{~s}, 1 \mathrm{~B}, \mathrm{BCHR}),-1.2\left(1 \mathrm{~B}, \mathrm{BF}_{4}\right), \\ & -2.8 \text { to }-24.1(\mathrm{vbr}, 8 \mathrm{~B}) \end{aligned}$	34.1 [d, br, PRh, J (RhP) 126], 33.7 (s, PMe $_{3}$), 30.7 [d, PAu, J(RhP) 4]

[^1]having either a cisoid or transoid relationship with each other. However, in the crystalline state the latter arrangement occurs in Ha [3], and we assume that this transoid structure exists for IIf also. As a consequence of the dynamic behaviour of IIa, the ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum at $-50^{\circ} \mathrm{C}$ shows two resonances at $\delta 35.1$ [d, $J(\mathrm{RhP}) 147 \mathrm{~Hz}]$ and 34.0 [d, $J(\mathrm{RhP}) 143 \mathrm{~Hz}$ with relative intensity $3: 2$. These signals almost coalesce in the room temperature spectrum. The dynamic behaviour was also revealed in the ${ }^{1} \mathrm{H}$ NMR spectrum, since at $-40^{\circ} \mathrm{C}$ there were two sets of resonances. Those for the $\mathrm{C}(\mathrm{H}) \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4$ protons of the two diastereoisomers of Шa are seen at $\delta 6.13$ and 6.16, to be compared with the single peak observed at $\boldsymbol{\delta} 6.37$ for IIf.

The interconversion of the diastereoisomers of IIa, so as to allow the PPh_{3} and $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4$ groups to be either transoid or cisoid to one another, is attributed to a low energy pathway involving breaking of the weak $\mathrm{Rh}-\mathrm{C}(\mathrm{H}) \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4$ bond [3]. This process would allow rotation of the $\mathrm{B}-\mathrm{C}(\mathrm{H}) \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4$ linkage, which, when followed by reformation of the $\mathrm{Rh}-\mathrm{C}(\mathrm{H}) \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4$ bond, would transform the PPh_{3} and $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4$ groups between cisoid and transoid configurations. Compound Uf has a greater potential for forming diastereoisomers than IIa since in addition to the chiral $\mathrm{BC}(\mathrm{H}) \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4$
and rhodium centres, the boron atom of the former group is also chiral. However, for steric reasons it is reasonable to consider that only one diastereoisomer of IIf might exist.

Treatment of the complexes IIa, IIc, and IIe with $\mathrm{K}\left[\mathrm{BH}(\mathrm{CHMeEt})_{3}\right]$, followed by addition of $\left[\mathrm{NEt}_{4}\right] \mathrm{Cl}$, gave the salts IIIa, IIIb, and IIIc, respectively, demonstrating the electrophilic character of the exopolyhedral carbon atoms of the $\mathrm{C}(\mathrm{H}) \mathrm{R}$ groups in the complexes II [3]. Similarly, the reaction between IIf and the reagent $\mathrm{K}\left[\mathrm{BH}(\mathrm{CHMeEt})_{3}\right]$, followed by addition of $\left[\mathrm{NEt}_{4}\right] \mathrm{Cl}$, afforded the related compound $\left[\mathrm{NEt}_{4}\right][\mathrm{Rh}$ (CO) $\left.\left(\mathrm{PPh}_{3}\right)\left(\eta^{5}-7,9-\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{10}\left(\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)-10\right\}\right]$ (IIId). Data fully characterising this product are given in Tables $1-3$, and are similar to those of its isomer IIIa, after allowing for variations arising because of the different $2,1,7-$ and $3,1,2-\mathrm{RhC}_{2} \mathrm{~B}_{9}$ icosahedral core structures of the two species. The ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of IIId shows a doublet resonance at $\delta 35.7$ [$J(\mathrm{RhP}) 164 \mathrm{~Hz}$] to be compared with the corresponding doublet in the spectrum of IIIa at $\delta 33.7$ [J (RhP) 154 Hz] [3]. The linkage of the $\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4$ group to a chiral boron atom in IIId results in non-equivalence of the methylene protons in the ${ }^{1} \mathrm{H}$ NMR spectrum, due to their being diastereotopic. Thus an AB quartet, integrating for two protons, is observed at δ

TABLE 4. Selected internuclear distances ((\AA) and angles $\left({ }^{\circ}\right)$ in the complex $\left[\mathrm{Rh}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)\left(\boldsymbol{\eta}^{5}-7,9-\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{10}\left[\mathrm{C}(\mathrm{H})\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}^{-4}\right)\left(\mathrm{PEt}_{3}\right)\right]-10\right)\right]$. $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (IVb)

$\overline{\mathbf{R h}-\mathbf{P}(1)}$	$2.286(2)$	Rh-B(1)	2.275(6)	Rh-C(2)	2.331(5)	Rh-B(3)	2.261(7)
Rh-C(4)	2.357(6)	$\mathrm{Rh}-\mathrm{B}(5)$	2.210(7)	Rh-C(5)	1.804(6)	$\mathrm{P}(2)-\mathrm{C}(10)$	1.818(6)
$\mathrm{B}(1)-\mathrm{C}(2)$	$1.688(8)$	B(1)-B(5)	1.863(9)	$\mathrm{B}(1)-\mathrm{B}(6)$	1.801(9)	$\mathrm{B}(1)-\mathrm{B}(10)$	$1.784(9)$
$\mathrm{B}(1)-\mathrm{C}(10)$	$1.650(7)$	$\mathrm{C}(2)-\mathrm{B}(3)$	1.721(8)	$\mathrm{C}(2)-\mathrm{B}(6)$	1.711(9)	$\mathrm{C}(2)-\mathrm{B}(7)$	1.686(8)
$\mathrm{B}(3)-\mathrm{C}(4)$	1.668(10)	$\mathrm{B}(3)-\mathrm{B}(7)$	1.810(10)	B(3)-B(8)	1.808(10)	$\mathrm{C}(4)-\mathrm{B}(5)$	$1.700(9)$
$\mathrm{C}(4)-\mathrm{B}(8)$	1.677(10)	$\mathrm{C}(4)-\mathrm{B}(9)$	1.679(10)	B(5)-B(9)	1.801(10)	$\mathrm{B}(5)-\mathrm{B}(10)$	1.811(10)
$\mathrm{B}(6)-\mathrm{B}(7)$	1.765(9)	$\mathrm{B}(6)-\mathrm{B}(10)$	1.741(10)	B(6)-B(11)	1.741(9)	B(7)-B(8)	$1.776(11)$
B(7)-B(11)	$1.790(11)$	$\mathrm{B}(8)-\mathrm{B}(9)$	1.767(11)	B(8)-B(11)	1.785(11)	$\mathrm{B}(9)+\mathrm{B}(10)$	1.769(9)
B(9)-B(11)	1.763(11)	$\mathrm{B}(10)-\mathrm{B}(11)$	1.790(10)	$\mathrm{C}(5)-\mathrm{O}(5)$	1.145(9)	$\mathrm{C}(10)-\mathrm{C}(11)$	$1.527(7)$
$\mathbf{P}(1)-\mathrm{Rh}-\mathrm{B}(1)$	144.1(2)	$\mathrm{P}(1)-\mathrm{Rh}-\mathrm{C}(2)$	109.0(1)	$\mathrm{B}(1)-\mathbf{R h}-\mathrm{C}(2)$	43.0(2)		
$\mathrm{P}(1)-\mathrm{Rh}-\mathrm{B}(3)$	95.6(2)	$\mathrm{B}(1)-\mathrm{Rh}-\mathrm{B}(3)$	$77.0(2)$	$\mathrm{C}(2)-\mathrm{Rh}-\mathrm{B}(3)$	44.0(2)		
$\mathrm{P}(1)-\mathrm{Rh}-\mathrm{C}(4)$	121.3(2)	B(1)-Rh-C(4)	76.2(2)	$\mathrm{C}(2)-\mathrm{Rh}-\mathrm{C}(4)$	71.0 (2)		
$\mathrm{B}(3)-\mathrm{Rh}-\mathrm{C}(4)$	42.3(2)	P(1)-Rh-B(5)	163.2(2)	$\mathrm{B}(1)-\mathrm{Rh}-\mathrm{B}(5)$	$49.1(2)$		
$\mathrm{C}(2)-\mathrm{Rh}-\mathrm{B}(5)$	75.4(2)	$\mathrm{B}(3)-\mathrm{Rh}-\mathrm{B}(5)$	76.1(3)	$\mathrm{C}(4)-\mathrm{Rh}-\mathrm{B}(5)$	43.6(2)		
$\mathrm{P}(1)-\mathrm{Rh}-\mathrm{C}(5)$	89.9(2)	$\mathrm{B}(1)-\mathrm{Rh}-\mathrm{C}(5)$	105.0(3)	$\mathrm{C}(2)-\mathrm{Rh}-\mathrm{C}(5)$	143.9(3)		
$\mathrm{B}(3)-\mathrm{Rh}-\mathrm{C}(5)$	$167.0(3)$	$\mathrm{C}(4)-\mathrm{Rh}-\mathrm{C}(5)$	125.2(3)	B(5)-Rh-C(5)	95.4(3)		
$\mathrm{Rh}-\mathrm{B}(1)-\mathrm{C}(2)$	70.3(3)	Rh-B(1)-B(5)	63.7(3)	$\mathrm{C}(2)-\mathrm{B}(1)-\mathrm{B}(5)$	102.8(4)		
Rh-B(1)-C(10)	106.4(4)	$\mathrm{C}(2)-\mathrm{B}(1)-\mathrm{C}(10)$	122.0(4)	$\mathrm{B}(5)-\mathrm{B}(1)-\mathrm{C}(10)$	128.4(5)		
$\mathrm{B}(10)-\mathrm{B}(1)-\mathrm{C}(10)$	124.3(5)	$\mathrm{Rh}-\mathrm{C}(2)-\mathrm{B}(1)$	66.7(3)	Rh-C(2)-B(3)	65.9(3)		
$\mathrm{B}(1)-\mathrm{C}(2)-\mathrm{B}(3)$	111.9(4)	$\mathbf{R h - B (3) - C (2) ~}$	70.1(3)	Rh-B(3)-C(4)	71.9(3)		
$\mathrm{C}(2)-\mathrm{B}(3)-\mathrm{C}(4)$	106.9(5)	Rh-C(4)-B(3)	65.8(3)	Rh-C(4)-B(5)	63.6(3)		
$\mathrm{B}(3)-\mathrm{C}(4)-\mathrm{B}(5)$	109.8(4)	Rh-B(5)-B(1)	67.3(3)	Rh-B(5)-C(4)	72.8(3)		
$\mathrm{B}(1)-\mathrm{B}(5)-\mathrm{C}(4)$	106.6(4)	$\mathrm{B}(8)-\mathrm{B}(9)-\mathrm{B}(10)$	108.5(5)	$\mathrm{B}(6)-\mathrm{B}(10)-\mathrm{B}(9)$	107.6(5)	!	
$\mathrm{B}(7)-\mathrm{B}(8)-\mathrm{B}(9)$	107.2(5)	$\mathrm{B}(6)-\mathrm{B}(7)-\mathrm{B}(8)$	107.6(5)	B(7)-B(6)-B(10)	108.9(5)		
$\mathrm{Rh}-\mathrm{C}(5)-\mathrm{O}(5)$	176.8(6)	$\mathrm{P}(2)-\mathrm{C}(10)-\mathrm{B}(1)$	119.9(4)	$\mathrm{P}(2)-\mathrm{C}(10)-\mathrm{C}(11)$	109.6(4)	;	
$\mathrm{B}(1)-\mathrm{C}(10)-\mathrm{C}(11)$	$114.5(4)$						

2.45 and $2.54[J(\mathrm{AB}) 12 \mathrm{~Hz}]$ (Table 2). This contrasts with the ${ }^{1} \mathrm{H}$ NMR spectrum of IIIa where only a broad signal is seen at $\delta 2.48$ [3], because the CH_{2} protons are equivalent since the boron atom $\mathrm{CCB} B \mathrm{~B}$ to which the $\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4$ fragment is attached is not chiral. In the ${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of IIId resonances for the cage CH vertices occur at $\delta 45.6$ and 41.7 , with the signal for the $\mathrm{BCH} \mathrm{H}_{2}$ nucleus appearing as a very broad peak at $\delta 33.7$, the broadness presumably due to unresolved ${ }^{11} \mathrm{~B}-{ }^{13} \mathrm{C}$ coupling. In the ${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of IIIa the resonance for the BCH_{2} nucleus is at $\delta 34.2$ [3].

Having established that the exopolyhedral carbon atom in IIf was susceptible to nucleophilic attack by H^{-}, it was decided to investigate whether the carbon atom would add tertiary phosphines to form ylide type structures. Treatment of IIf in THF with $\mathrm{PMe}_{3}, \mathrm{PEt}_{3}$, or $\mathrm{PMe}_{2} \mathrm{Ph}$ gave, respectively, the zwitterionic complexes $\left[\mathrm{Rh}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)\left(\eta^{5}-7,9-\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{10}[\mathrm{C}(\mathrm{H})(\mathrm{R})(\mathrm{L})]-\right.\right.$ 10)] ($\mathrm{R}=\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4, \mathrm{~L}=\mathrm{PMe}_{3}$ (IVa), PEt_{3} (IVb), or $\mathrm{PMe}_{2} \mathrm{Ph}$ (IVc)), characterised by the data given in Tables 1-3. Duplication of some resonances in the NMR spectra of these products revealed that they were each formed as a mixture of two diastereoisomers, one of which was present in solution in very minor amount, typically 10% or less based on peak intensities. Discussion of the NMR data is deferred, however, until the results of an X-ray diffraction study on $\mathbf{I V b}$ are described.

- $\mathrm{OH} \mathrm{Ob} \oplus \mathrm{B}$

IVa PMe_{3}
IVb PEt_{3}
IVe $\mathrm{PMe}_{2} \mathrm{Ph}$
Selected bond distances and angles are given in Table 4, and the molecule IVb is shown in Fig. 1. The exopolyhedral carbon atom $\mathrm{C}(10)$ is chiral, so that in one of the two diastereoisomers the $\mathrm{H}, \mathrm{PEt}_{3}$, and $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4$ groups will be arranged in this clockwise

Fig. 1. The molecular structure of $\left[\mathrm{Rh}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)\left(\eta^{5}-7,9-\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{10}-\right.\right.$ $\left.\left.\left[\mathrm{C}(\mathrm{H})\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)\left(\mathrm{PEt}_{3}\right)\right]-10\right)\right]$ (IVb), showing the crystallographic numbering scheme.
order when viewed along the $\mathrm{O}(10)-\mathrm{B}$ bond towards the boron atom in the CBCBB face of the cage, while the other diastereoisomer will have an $\mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4$, PEt_{3} orientation. It is seen from Fig. 1 that the former configuration is the one revealed by the X -ray diffraction study. Moreover, NMR measurements on solutions of the crystals employed in the X-ray work revealed that they were those of the major isomer. The molecular structure also clearly shows that the PPh_{3}, PEt_{3} and $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4$ groups are oriented so that they point away from each other, an arrangement one would anticipate based on steric considerations. Significantly also, the PPh_{3} ligand is orientated such that it is as far away from $\mathrm{C}(10)$ as possible. One may postulate that as the PEt_{3} molecule attacks the exopolyhedral C atom in IIf, rupture of the $\mathrm{Rh}-\mathrm{C} \sigma$ bond is accompanied by rotation of the $\mathrm{Rh}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)$ unit, so as to move the bulky PPh_{3} ligand away from the sterically demanding $\mathrm{C}(\mathrm{H})\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)\left(\mathrm{PEt}_{3}\right)$ fragment. Furthermore, the orientation of the $\mathrm{Rh}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)$ moiety in the precursor IIIf, assuming it has a transoid $\mathrm{P}-\mathrm{Rh}-\mathrm{C}$ structure similar to that established for Шa [3], would clearly make it very unlikely for the PEt_{3} molecule to attack the carbon atom in the former species from below the plane of the $\mathrm{C}(\mathrm{H}) \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4$ fragment. This accounts for the predominance of the diastereoisomer identified in the X-ray diffraction study which is the isomer which would result from approach of the PEt_{3} molecule from above and to the right of the $\mu-\mathrm{C}(\mathrm{H}) \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4$ group in IIf, as depicted in the structural formula of $\mathbf{I V b}$.

The crystal structure of IVb having been established, the NMR data (Tables 2 and 3) are readily interpreted. In the ${ }^{31} \mathrm{P}-\left({ }^{1} \mathrm{H}\right\}$ NMR spectrum the resonance for the
PPh_{3} ligand occurs as a very broad doublet at $\delta 36.4$ [J (RhP) 164 Hz]. No signal for the PPh_{3} group of the minor isomer was detected due either to the weakness or broadness of the resonance, or because it was hidden by the broad doublet of the major isomer. The resonance for the PEt_{3} group of the major isomer occurs at $\delta 38.5$, and for the minor isomer at $\delta 38.4$. The relative intensity of these peaks was $c a .18: 1$, and as expected there was no ${ }^{103} \mathrm{Rh}^{-31} \mathrm{P}$ coupling on either signal, both signals being sharp singlets. The chemical shifts for the PEt_{3} groups in the two isomers are similar to that observed ($\delta 35.5$) in the spectrum of the zwitterionic complex $\left[\mathrm{Cr}(\mathrm{CO})_{3}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{4}\left(\mathrm{CH}_{2} \mathrm{PEt}_{3}\right)\right)\right]$ [5]. In the ${ }^{11} \mathrm{~B}$ - $\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathbf{I V b}$ the resonances for the $\mathrm{BC}(\mathrm{H})\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)\left(\mathrm{PEt}_{3}\right)$ nuclei of the major and minor isomers occur at $\delta-5.0$ and -6.8 , respectively. These shifts are appreciably more shielded than those customarily observed for cage boron atoms bonded to exopolyhedral carbons which generally occur in the range $\delta c a .1$ to 12 [6]. However, the $\mathrm{C}(\mathrm{H})\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)(\mathrm{L})$ groups in the compounds IV, with their tertiary phosphine substituents, are without precedent, and there is no doubt about the assignment of the peaks at $\delta-5.0$ and -6.8 because in a fully coupled ${ }^{11}$ B NMR spectrum of $\mathbf{I V b}$ they remain as singlets whereas all the resonances for the BH groups ($\delta-13.1$ to -26.6) become doublets.

In the ${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathbf{I V b}$ only the resonance for the $\mathrm{BC}(\mathrm{H})\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)\left(\mathrm{PEt}_{3}\right)$ nucleus of the major isomer is seen (δ 33.9). Six peaks are observed for the carbon nuclei of the $\mathrm{C}_{6} \mathrm{H}_{4}$ ring, a feature diagnostic for hindered rotation about the $\mathrm{C}(10)-\mathrm{C}(11)$ bond (Fig. 1) [7]. The large PEt_{3} group evidently prevents free rotation. The cage CH vertices of IVb are clearly inequivalent with two resonances being seen at $\delta 45.6$ and 44.7. Signals for the cage CH and CO groups of the minor diastereoisomer are not observed, but the resonance for the CO ligand of the major isomer occurs as a doublet of doublets of doublets at $\delta 197.0$ [$J(\mathrm{RhC}) 92, J(\mathrm{PC}) 22$ and 4 Hz . The ${ }^{1} \mathrm{H}$ NMR spectrum is as expected, allowing for the fact that few peaks for the minor isomer are revealed due to its low concentration. A diagnostic resonance [6] for the $\mathrm{BC}(H)\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)\left(\mathrm{PEt}_{3}\right)$ proton occurs at $\delta 4.32$ as a broad doublet [$J(\mathrm{PH}) 21 \mathrm{~Hz}$]. The CH_{2} protons of the PEt_{3} moiety give rise to a complex pattern (Table 2) as a consequence of their being diastereotopic. The spectroscopic data for IVa and IVc may be interpreted in a similar manner to those of $\mathbf{I V b}$, leaving no doubt that all three compounds have similar structures. Although the ${ }^{13} \mathrm{C}$ - $\left.{ }^{1} \mathrm{H}\right\}$ NMR spectra of IVa and IVc were insufficiently resolved in the aromatic region to allow all resonances to be identified, it was evident that for these species also the $\mathrm{C}_{6} \mathrm{H}_{4}$ fragment displays more
than four signals, in accord with restricted rotation about the $\mathrm{C}-\mathrm{C}^{1}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)$ bond.

The reaction between compound IIf and MeLi was also investigated and found to give a chromatographically inseparable mixture ($\mathrm{ca} .2: 3$) of $\left[\mathrm{NEt}_{4}\right][\mathrm{Rh}(\mathrm{CO})$ -$\left.\left(\mathrm{PPh}_{3}\right)\left\{\eta^{5}-7,9-\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{10}\left[\mathrm{C}(\mathrm{H})(\mathrm{Me})\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)\right]-10\right\}\right]$ (IIIe) and $\left[\mathrm{NEt}_{4}\right]\left[\mathrm{Rh}(\mathrm{COMe})\left(\sigma, \eta^{5}-7,9-\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{10}[\mathrm{C}(\mathrm{H})\right.\right.$ $\left.\left.\left.\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right]-10\right)\left(\mathrm{PPh}_{3}\right)\right](\mathrm{V})$. The NMR signals recorded on mixtures of these two products were well resolved, allowing the resonances for both to be assigned on the basis of the observed chemical shifts, coupling constants, and peak intensities. Moreover, the NMR data revealed that both IIIe and \mathbf{V} exist as single diastereoisomers. Since the two complexes are isomers, microanalysis of the mixture (Table 1) was indicative of the composition.

v

VI

Clearly IIIe arises from nucleophilic attack of Me^{-} on the exopolyhedral bridging carbon atom of IIf, whereas \mathbf{V} results from attack on the carbonyl ligand. Since the two compounds are so disparate, and there is no interconversion between them, it is reasonable for their spectroscopic properties to be discussed separately. In the ${ }^{11} \mathrm{~B}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of IIIe there is a diagnostic resonance for the $B C(H)(M e)\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)$ nucleus at $\delta 3.0$, and correspondingly in the ${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum there is a very broad peak for the $\mathrm{BC}(\mathrm{H})(\mathrm{Me})\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)$ carbon atom at δ 33.7. In the latter spectrum the CO resonance occurs as a doublet of doublets at $\delta 198.2$ [J (RhC) $92, J(\mathrm{PC}) 21 \mathrm{~Hz}$]. This observation clarifies the somewhat unexpected pattern seen for the $\mathbf{C O}$ resonance in the spectrum of $\mathbf{I V b}$ which, as mentioned above, occurs as a doublet of doublets of doublets ($J 92,22$, and 4 Hz). Clearly the small 4 Hz coupling must be a ${ }^{4} J(\mathrm{PC})$ coupling with the PEt_{3} group. Interestingly, the $\mathrm{C}_{6} \mathrm{H}_{4}$ group in the ${ }^{13} \mathrm{C}$ $\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of IIIe gives rise to the customary four peaks, indicating free rotation about the C $\mathrm{C}^{1}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)$ bond. This is in contrast with the six signals for the $\mathrm{C}_{6} \mathrm{H}_{4}$ group seen in the spectrum of IVb, mentioned earlier. Since the Me group in lilb is appreciably less sterically demanding than the tertiary phosphine molecules present in the complexes IV it is not surprising that rotation about the $\mathrm{C}-\mathrm{C}^{1}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}\right.$ 4) bond can take place in IIIe.

Owing to the presence of the peaks from the NEt_{4}^{+} counter ion in IIIe, in the ${ }^{1} \mathrm{H}$ NMR spectrum it was
initially impossible to detect the resonances due to the $\mathrm{BC}(\mathrm{H})(\mathrm{Me})\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)$ protons. Accordingly the synthesis was repeated using $\left[\mathrm{N}\left(\mathrm{PPh}_{3}\right)_{2}\right]^{+}$as the counter ion. This allowed the signal for the $\mathrm{BC}(\mathrm{H}) \mathrm{Me}$ group to be measured as a doublet $[J(\mathrm{HH}) 7 \mathrm{~Hz}]$ at $\delta 1.25$, and the $\mathrm{BC}(H) \mathrm{Me}$ proton to be seen as a quartet $[J(\mathrm{HH}) 7$ $\mathrm{Hz}]$ at δ 3.06. The $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4$ protons resonated as a singlet at $\delta 2.00$.

The IR spectrum of \mathbf{V} displays a broad band at 1600 cm^{-1}, typical for an acyl group. In the ${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum the signal for this group is seen at $\delta 243.3$ [$J(\mathrm{RhC}) 32, J(\mathrm{PC}) 13 \mathrm{~Hz}$]. A very broad resonance at δ 57.6 must be assigned to the $C(\mathrm{H}) \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4$ nucleus, although it is considerably less deshielded than those observed in the neutral complex IIf ($\delta 80.4$) and the other species of type II [2e, 3]. In the ${ }^{11} \mathrm{~B}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum the presence of the $B C(H) \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4$ nucleus is revealed by a resonance at $\delta 3.0$, the remaining boron atoms giving broad overlapping signals in the range $\delta-11.6$ to -28.4 .

For all the complexes III and IV the CO stretches in the IR spectra (Table 1) are at very similar or cven the same frequencies as those of the salts I (for Ie, $\nu_{\max }$ (CO) is at $1915 \mathrm{~cm}^{-1}$ [8]). In contrast, $\nu_{\text {max }}(\mathrm{CO})$ for IIf (2022 cm^{-1}) is $c a .100 \mathrm{~cm}^{-1}$ higher in frequency. This suggests that in the species III and IV negative charge resides to an appreciable degree at the metal centres, leading to the expectation that the rhodium atoms in the latter might show nucleophilic character, reacting with electrophiles in certain circumstances, as does rhodium in the reagents \mathbf{I}. To test this idea the reaction between IVa and $\left[\mathrm{Au}\left(\mathrm{PPh}_{3}\right)\right]^{+}$was investigated.

Treatment of IVa in THF with $\left[\mathrm{AuCl}\left(\mathrm{PPh}_{3}\right)\right]$, in the presence of TlBF_{4}, afforded the green complex [Rh -$\mathrm{Au}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{2}\left(\eta^{5}-7,9-\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{10}\left[\mathrm{C}(\mathrm{H})\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)(\mathrm{P}-\right.\right.$ $\left.\left.\left.\left.\mathrm{Me}_{3}\right)\right]-10\right\}\right]\left[\mathrm{BF}_{4}\right]$ (V), fully characterised by the data given in Tables $1-3$. The salt \mathbf{V} is closely related to the neutral complexes $\left[\mathrm{RhAu}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{2}\left(\eta^{5}-7, n-\mathrm{C}_{2}-\right.\right.$ $\mathrm{B}_{9} \mathrm{H}_{11}$)] ($n=8$ [2b] or 9 [2g]) obtained by treating the salts Ib or Ie, respectively, with $\left[\mathrm{AuCl}\left(\mathrm{PPh}_{3}\right)\right]$ in the presence of TIBF_{4} to facilitate removal of chloride as insoluble TICl.

The ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of VI has resonances for the $\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)$ group at $\delta 34.1[J(\mathrm{RhP}) 126 \mathrm{~Hz}$], the PMe_{3} group at δ 33.7, and the $\mathrm{Au}(\mathrm{PPh})_{3}$ group at δ $30.7[J(\mathrm{RhP}) 4 \mathrm{~Hz}]$. No other signals were observed, indicating that only one diastereoisomer was formed, probably for steric reasons connected with the bulky $\mathrm{Au}(\mathrm{PPh})_{3}$ group. In the ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of [$\left.\mathrm{RhAu}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{2}\left(\eta^{5}-7,9-\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{11}\right)\right]$ resonances for the $\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)$ and $\mathrm{Au}\left(\mathrm{PPh}_{3}\right)$ groups are seen at $\delta 36.4$ [J (RhP) 132 Hz] and 33.2 , respectively [2 g]. In the IR spectrum of this compound the CO stretch is at 1993 cm^{-1}, to be compared with that at $1972 \mathrm{~cm}^{-1}$ for VI.

The latter value reflects the different $\mathbf{R h}-\mathbf{C O}$ bonding in the two complexes. The CO absorption for VI is appreciably lower than one would expect for a cationic carbonyl complex, and must be a consequence of the positive charge being some distance away at the phosphorus atom, thus allowing significant back bonding from the rhodium to the carbonyl ligand. The shift in frequency from $1927 \mathrm{~cm}^{-1}$ in IVa to $1972 \mathrm{~cm}^{-1}$ in VI is, however, consistent with a transition from an an-ionic- to a cationic- type rhodium complex, lending credence to the proposal that there is significant separation and localisation of the positive and negative charges in the z witterionic compounds IV. Thus effectively, in the formation of VI from IVa the rhodium centre has gone from being anionic in character to neutral. In accord with this, the magnitude of the ${ }^{103} \mathrm{Rh}-{ }^{-13} \mathrm{CO}$ coupling in the ${ }^{13} \mathrm{C}-\left({ }^{1} \mathrm{H}\right)$ NMR spectrum decreases from 92 Hz in IVa to 76 Hz in YI, a value very close to that (73 Hz) in $\left[\mathrm{RhAu}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{2}\left(\eta^{5}\right.\right.$ -$\left.7,9-\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{11}\right)$] [2g]. The $92 \mathrm{~Hz}{ }^{103} \mathrm{Rh}-{ }^{13} \mathrm{CO}$ coupling for IVa is typical for a rhodium complex in which the metal centre carries a negative charge.

The ${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of VI shows resonances for the non-equivalent cage CH vertices at δ 57.9 and 51.4, a very broad peak for the BC $(\mathrm{H})\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)\left(\mathrm{PMe}_{3}\right)$ atom at $\delta 37.2$, and peaks for the $\mathrm{Me}-4$ and PMe_{3} groups at $\delta 21.3$ and 10.6 [J(PC) 54 Hz], respectively. In the ${ }^{1} \mathrm{H}$ NMR spectrum the $\mathrm{BC}(\mathrm{H})\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)\left(\mathrm{PMe}_{3}\right)$ is a doublet at $\delta 3.67$ [$J(\mathrm{PH}) 22 \mathrm{~Hz}$, and in the ${ }^{11} \mathrm{~B}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum the signal at $\delta 0.4$ is assigned to the $B C(H)\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-\right.$ 4) $\left(\mathrm{PMe}_{3}\right)$ nucleus. In agreement this resonance remains a singlet in a proton-coupled ${ }^{11} \mathrm{~B}$ spectrum.

The reactions reported in this paper illustrate the reactive nature of the $\mu-\mathrm{C}(\mathrm{H}) \mathrm{R}$ groups in the complexes II and the nucleophilicity of the rhodium centres in the compounds IV. Both observations exemplify the potential of these compounds for further syntheses.

3. Experimental section

Light petroleum refers to the fraction of b.p. 40$60^{\circ} \mathrm{C}$. All solvents were distilled over appropriate drying agents prior to use. Chromatography columns, ca. 15 cm long and 3 cm wide, were packed with alumina (Brockmann activity II). Celite pads used to remove TlCl by filtration, were $c a .3 \mathrm{~cm}$ thick. All experiments were carried out under nitrogen by using Schlenk-tube techniques. The NMR measurements were made with a Bruker AMX 360 MHz instrument. Throughout this paper chemical shifts (δ) are expressed in ppm. The IR spectra were recorded with a Bruker IFS 25 spectrometer. The reagents $\left[\mathrm{NEt}_{4}\right]\left[\mathrm{Rh}\left(\mathrm{CO}^{2}\right)\left(\mathrm{PPh}_{3}\right)\left(\eta^{5}-7,9-\mathrm{C}_{2} \mathrm{~B}_{9}-\right.\right.$ $\left.\left.\mathrm{H}_{11}\right)\right](\mathrm{Ie})[8],\left[\mathrm{Mn}\left(\equiv \mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)(\mathrm{CO})_{2}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{Me}\right)\right]$
[BCl_{4}] [9], and $\left[\mathrm{AuCl}\left(\mathrm{PPh}_{3}\right)\right]$ [10] were prepared by procedures previously described. The reagent $\mathrm{K}\left[\mathrm{BH}(\mathrm{CHMeEt})_{3}\right]\left(1.0 \mathrm{~mol} \mathrm{dm}{ }^{-3}\right.$ solution in THF) was obtained from Aldrich Chemicals. Analytical and other data for the new compounds are given in Table 1.

3.1. Synthesis of $\left[R h\left\{\sigma, \eta^{5}-7,9-C_{2} B_{y} H_{l 0} I C(H) C_{6} H_{4} \mathrm{Me}\right.\right.$ -4)-10\} $(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)$]

A CH $\mathrm{Cl}_{2}\left(25 \mathrm{~cm}^{3}\right.$) solution of Ie ($0.50 \mathrm{~g}, 0.76$ $\mathrm{mmol})$ was saturated with CO gas, $\left[\mathrm{Mn}\left(\equiv \mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{Me}-\right.\right.$ 4) (CO) $\left.{ }_{2}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{Me}\right)\right]\left[\mathrm{BCl}_{4}\right](0.34 \mathrm{~g}, 0.76 \mathrm{mmol})$ was added, and the mixture stirred under CO for ca .5 min . Solvent was removed in vacuo and the residue dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-light petroleum ($10 \mathrm{~cm}^{3}, 3: 2$) and chromatographed on alumina at $-10^{\circ} \mathrm{C}$. Elution with the same solvent mixture afforded an orange eluate. Solvent was removed in vacuo and the residue crystallised from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-light petroleum ($50 \mathrm{~cm}^{3}, 1: 20$) to give the product as an orange oil due to the presence of $\left[\mathrm{Mn}(\mathrm{CO})_{3}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{Me}\right)\right]$, another product of the reaction. Trituration with light petroleum ($50 \mathrm{~cm}^{3}$) for $c a .2 \mathrm{~h}$ afforded orange microcrystals of $\left[\operatorname{Rh}\left\{\sigma, \eta^{5}-7,9-\right.\right.$ $\left.\left.\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{10}\left[\mathrm{C}(\mathrm{H}) \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right]-10\right\}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)\right]$ (IIf), and removed the $\left[\mathrm{Mn}(\mathrm{CO})_{3}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{Me}\right)\right]$, which is soluble in light petroleum. The product was washed with light petroleum ($2 \times 25 \mathrm{~cm}^{3}$) and dried in vacuo (0.40 g).

3.2. Reactions of the complex [$R h\left\{\sigma, \eta^{5}-7,9-C_{2} B_{9} H_{10^{-}}\right.$

 $\left.\left.\left[\mathrm{C}(\mathrm{H}) \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right]-10\right\}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)\right]$(i) A THF ($20 \mathrm{~cm}^{3}$) solution of IIf $(0.15 \mathrm{~g}, 0.24$ $\mathrm{mmol})$ was treated with $\mathrm{K}\left[\mathrm{BH}(\mathrm{CHMeEt})_{3}\right]\left(0.27 \mathrm{~cm}^{3}\right.$, 0.27 mmol) and the mixture stirred for $c a .15 \mathrm{~min}$, after which $\left[\mathrm{NEt}_{4}\right] \mathrm{Cl}(0.048 \mathrm{~g}, 0.27 \mathrm{mmol})$ was added and the mixture further stirred for 1 h . Solvent was removed in vacuo and the yellow-green residue extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(2 \times 20 \mathrm{~cm}^{3}\right)$; the extracts were filtered through a Celite pad to give a green solution, from which the solvent was removed in vacuo. The residue was redissolved in the minimum of $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(3 \mathrm{~cm}^{3}\right)$ and $\mathrm{Et}_{2} \mathrm{O}\left(50 \mathrm{~cm}^{3}\right)$ was added dropwise with vigorous stirring to afford a green oil. This oil was washed with $\mathrm{Et}_{2} \mathrm{O}\left(2 \times 20 \mathrm{~cm}^{3}\right)$ and then triturated with light petroleum ($50 \mathrm{~cm}^{3}$) for $c a .1 \mathrm{~h}$ to give dark green microcrystals of $\left[\mathrm{NEt}_{4}\right]\left[\mathrm{Rh}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)\left\{\eta^{5}-7,9-\mathrm{C}_{2} \mathrm{~B}_{9}-\right.\right.$ $\mathrm{H}_{10}\left(\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)$-10\}] (IIId), which were washed with light petroleum ($2 \times 10 \mathrm{~cm}^{3}$) and dried in vacuo $(0.18 \mathrm{~g})$.
(ii) To a THF ($15 \mathrm{~cm}^{3}$) solution of $\mathbf{1 I f}(0.10 \mathrm{~g}, 0.16$ mmol) was added $\mathrm{PMe}_{3}\left(0.30 \mathrm{~cm}^{3}\right.$ of a $0.5 \mathrm{~mol} \mathrm{dm}{ }^{-3}$ solution in THF, 0.16 mmol). The mixture lightened immediately and was stirred for $c a .15 \mathrm{~min}$, after which the solvent was removed in vacuo. The orange residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-light petroleum ($5 \mathrm{~cm}^{3}, 3: 2$) and chromatographed on alumina at $-10^{\circ} \mathrm{C}$. Elution
with the same solvent mixture afforded initially an orange fraction, followed by a yellow band. The orange band was collected and subsequently shown by IR and NMR spectroscopy to be a trace of unreacted IIf. The yellow band was eluted with pure $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, affording a green-yellow solution. Removal of solvent in vacuo, followed by crystallisation from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-light petroleum ($30 \mathrm{~cm}^{3}, 1: 10$) gave green-yellow microcrystals of [Rh (CO) $\left(\mathrm{PPh}_{3}\right) \not \eta^{5}-7,9-\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{10}\left[\mathrm{C}(\mathrm{H})\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)\left(\mathrm{PMe}_{3}\right)\right]-$ 10\}] (IVa), which were washed with light petroleum ($2 \times 10 \mathrm{~cm}^{3}$) and dried in vacuo (0.11 g).
(iii) Similarly a THF ($15 \mathrm{~cm}^{3}$) solution of IIf $(0.10 \mathrm{~g}$, $0.16 \mathrm{mmol})$ was treated with $\mathrm{PEt}_{3}\left(0.024 \mathrm{~cm}^{3}, 0.16\right.$ mmol), causing the solution to lighten in colour immediately from dark orange to golden yellow. After ca. 5 min stirring the solvent was removed in vacuo. The resulting residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-light petroleum ($5 \mathrm{~cm}^{3}, 3: 2$) and chromatographed on alumina at $-10^{\circ} \mathrm{C}$. Elution with the same solvent mixture afforded a yellow eluate. Removal of solvent in vacuo, followed by crystallisation from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-light petroleum ($20 \mathrm{~cm}^{3}, 1: 10$) gave yellow microcrystals of $[\mathrm{Rh}(\mathrm{CO})$ -$\left.\left(\mathrm{PPh}_{3}\right)\left(\eta^{5}-7,9-\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{10}\left[\mathrm{C}(\mathrm{H})\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)\left(\mathrm{PEt}_{3}\right)\right]-10\right\}\right]$ (IVb), which were washed with light petroleum (2×10 cm^{3}) and dried in vacuo (0.10 g).
(iv) In a similar experiment, involving stirring of IIf in THF ($15 \mathrm{~cm}^{3}$) with $\mathrm{PMe}_{2} \mathrm{Ph}\left(0.32 \mathrm{~cm}^{3}\right.$ of a 0.5 mol dm^{-3} solution in THF, 0.16 mmol) for $c a .10 \mathrm{~min}$, chromatographing as above, and crystallising the yellow eluate from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-light petroleum ($20 \mathrm{~cm}^{3}, 1: 4$), afforded yellow microcrystals of $\left[\mathrm{Rh}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)\left(\eta^{5}-\right.\right.$ 7,9- $\left.\left.\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{10}\left[\mathrm{C}(\mathrm{H})\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)\right]-10\right)\right]$ (IVc), (0.10 g).
(v) Compound IIf ($0.20 \mathrm{~g}, 0.32 \mathrm{mmol}$) in THF (15 cm^{3}) was treated with $\mathrm{MeLi}\left(0.23 \mathrm{~cm}^{3}, 0.32 \mathrm{mmol}\right)$, the mixture immediately darkening to red. After ca. 15 \min stirring $\left[\mathrm{NEt}_{4}\right] \mathrm{Cl}(0.071 \mathrm{~g}, 0.39 \mathrm{mmol})$ was added, and the mixture stirred for a further 30 min . The solvent was then removed in vacuo, the resulting red residue extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(2 \times 20 \mathrm{~cm}^{3}\right)$ and the extracts were filtered through a Celite pad to afford a dark red filtrate. Solvent was removed in vacuo, and the oily residue crystallised from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-light petroleum ($20 \mathrm{~cm}^{3}, 1: 6$) to give a red oil, which was washed with light petroleum ($2 \times 10 \mathrm{~cm}^{3}$) and then triturated with $\mathrm{Et}_{2} \mathrm{O}\left(c a .50 \mathrm{~cm}^{3}\right)$ for $c a .1 \mathrm{~h}$ to afford a red powder, which was dried in vacuo. IR and NMR spectroscopy established that this was an inseparable mixture of the complexes, $\left[\mathrm{NEt}_{4}\right]\left[\mathrm{Rh}\left(\mathrm{CO}^{2}\right)\left(\mathrm{PPh}_{3}\right) \not \eta^{5}-\right.$ 7,9- $\left.\left.\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{10}\left[\mathrm{C}-(\mathrm{H})(\mathrm{Me})\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)\right]-10\right\}\right]$ (IIIe), and $\left[\mathrm{NEt}_{4}\right]\left[\mathrm{Rh}(\mathrm{COMe})\left\{\sigma, \boldsymbol{\eta}^{5}-7,9-\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{10}\left[\mathrm{C}(\mathrm{H}) \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right]-\right.\right.$ $\left.10)\left(\mathrm{PPh}_{3}\right)\right]$ (V) $(0.24 \mathrm{~g})$, formed in ca. 2:3 ratio, based on the relative intensities of the ${ }^{31} \mathrm{P}$ and ${ }^{1} \mathrm{H}$ NMR resonances of the mixture.

TABLE 5. Crystal data for compound $\mathbf{I V b}$

Molecular formula	$\mathrm{C}_{35} \mathrm{H}_{48} \mathrm{~B}_{9} \mathrm{OP}_{2} \mathrm{Rh} \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$
M	831.8
Crystal system	Monoclinic
Space group	$P 2_{1} / n$ (non-standard No. 14)
a / \AA	13.027(4)
b / \AA	17.415(4)
c / \AA	18.501(5)
$\beta /{ }^{\circ}$	98.92(2)
U / \AA^{3}	4146(2)
Z	4
$D_{\mathrm{c}} / \mathrm{Mg} \mathrm{m}^{-3}$	1.33
$F(000)$	1712
$\mu(\mathrm{Mo} \mathrm{K} \alpha) / \mathrm{cm}^{-1}$	6.47
T / K	295
Diffractometer	Siemens R3m/V
Scan type	Wyckoff ω
Scan speed/ ${ }^{\circ} \mathrm{min} .{ }^{-1}$	2-14.65
Scan range (ω°)	1.20
2θ range (${ }^{\circ}$)	5.0-50.0
Radiation	Mo K $\alpha(\bar{\lambda}, 0.71073$ ¢ $)$
Collected data	7917
Unique data	7298
Observed data [$F \geq 5.0 \sigma(F)]$	5133
Data-to-parameter ratio	10.3:1
Weighting scheme	$w^{-1}=\left[\boldsymbol{\sigma}^{2}(F)+0.0005\|F\|^{2}\right]$
R, R_{w}	0.049, 0.048
Kesidual density (max., min. $/ \mathrm{e}^{\AA^{-3}}$)	1.03, - 1.01

3.3. Reaction of $\left[\mathrm{AuCl}\left(\mathrm{PPh}_{3}\right)\right]$ with $\left[\mathrm{Rh}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)\right.$ $\left.\left\{\eta^{5}-7,9-C_{2} B_{9} H_{10} / C(H)\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)\left(\mathrm{PMe}_{3}\right) \mathrm{J}-10\right\}\right]$

The compounds IVa ($0.080 \mathrm{~g}, 0.11 \mathrm{mmol}$), $\left[\mathrm{AuCl}\left(\mathrm{PPh}_{3}\right)\right](0.056 \mathrm{~g}, 0.11 \mathrm{mmol})$, and $\mathrm{TlBF}_{4}(0.036 \mathrm{~g}$, 0.12 mmol) were stirred in THF ($20 \mathrm{~cm}^{3}$) for $c a .2 \mathrm{~h}$. The mixture was then filtered through a Celite pad, to remove TlCl , giving a pale yellow-green solution. Solvent was removed in vacuo, and the residue crystallised from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-light petroleum ($20 \mathrm{~cm}^{3}, 1: 6$) to afford pale green microcrystals of $\left[\mathrm{RhAu}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{2}\left(\eta^{5}-7,9-\right.\right.$ $\left.\left.\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{10}\left[\mathrm{C}(\mathrm{H})\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)\left(\mathrm{PMe}_{3}\right)\right]-10\right\}\right]\left[\mathrm{BF}_{4}\right]$ (VI), which were washed with light petroleum ($2 \times 5 \mathrm{~cm}^{3}$) and dried in vacuo (0.13 g).

3.4. Crystal structure determination

Crystals of compound $\mathbf{I V b}$ were grown from a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-light petroleum ($6 \mathrm{~cm}^{3}, 1: 5$) solution. The X -ray data were obtained from a clear yellow rectangular crystal ($0.41 \times 0.42 \times 0.61 \mathrm{~mm}$). Crystal data and relevant parameters are summarised in Table 5. The collected intensities showed no signs of significant decay. After the intensity data were corrected for Lorentz and polarization effects, an empirical absorption correction was applied.

The structure was solved by Patterson and Fourier methods using the shelxtl package [11]. The structure was refined by full-matrix least-squares, with anisotrop-
ic thermal parameters for all non-hydrogen atoms. The hydrogen atoms attached to the boron atoms and C(10) were located and refined with fixed isotropic thermal parameters ($U_{\text {iso }}=0.08 \AA^{2}$). All remaining hydrogen

TABLE 6. Atomic positional parameters (fractional coordinates \times 10^{4}) for $\mathbf{I V b}$, with estimated standard deviations in parentheses

	x	y	z
Rh	2201(1)	1994(1)	1409(1)
$\mathrm{P}(1)$	1468(1)	3003 (1)	1934(1)
P (2)	2011(1)	925(1)	-1029(1)
B(1)	2910(5)	1623(4)	416(3)
C(2)	3441(4)	2463(3)	739(3)
B(3)	3852(5)	2430(4)	1669(3)
C(4)	3845(5)	$1509(4)$	1916(3)
B(5)	3157(5)	983(4)	1232(4)
B(6)	4177(5)	1917(4)	247(3)
B(7)	4739(5)	2467(5)	1007(4)
B(8)	5005(6)	1838(5)	1768(4)
B(9)	4549(6)	918(4)	1468(4)
B(10)	3992(5)	982(4)	535(4)
B(11)	5150(5)	1503(5)	878(4)
C(5)	993(5)	1473(4)	1340(4)
O(5)	251(4)	1111(3)	1292(4)
C(10)	1947(4)	1586(3)	-277(3)
C(11)	1568(4)	2369(3)	-579(3)
C(12)	579(4)	2632(3)	-506(3)
C(13)	224(4)	3340(3)	-776(3)
C(14)	831(4)	3813(3)	-1128(3)
C(15)	1817(5)	3562(3)	-1207(3)
C(16)	2169(4)	2846(3)	-936(3)
C(17)	450(5)	4593(3)	-1410(4)
C(21)	1686(4)	3066(3)	2938(3)
C(22)	1131(4)	3580(3)	3312(3)
C(23)	1273(5)	3598(3)	4065(3)
C(24)	1995(5)	3110(4)	4456(3)
C(25)	2565(5)	2606(4)	4096(3)
C(26)	2401(5)	2589(3)	3338(3)
C(31)	1864(4)	3949(3)	1635(3)
C(32)	1840(4)	4066(3)	885(3)
C(33)	2157(5)	4762(4)	633(3)
C(34)	2519(5)	5337(3)	1104(4)
C(35)	2568(5)	5222(3)	1847(4)
C(36)	2246(4)	4535(3)	2108(3)
C(41)	42(4)	3021(3)	1749(3)
C(42)	-508(5)	2564(4)	2172(4)
C(43)	-1577(5)	2476(5)	2007(5)
C(44)	-2116(5)	2859(5)	1405(5)
C(45)	-1594(5)	3310(5)	988(4)
C(46)	-510(4)	3393(4)	1144(3)
C(51)	2017(5)	-49(4)	-716(4)
C(52)	1410(7)	-224(5)	-125(5)
C(61)	877(5)	1097(5)	-1739(4)
C(62)	-155(6)	942(5)	-1519(5)
C(71)	3123(5)	1054(4)	- 1484(3)
C(72)	3156(6)	552(5)	-2154(4)
$\mathrm{Cl}(1)$	6156(4)	4748(3)	977(3)
$\mathrm{Cl}(2)$	5424(5)	5704(5)	1867(4)
$\mathrm{Cl}(3)$	5118(6)	6203(6)	887(8)
C	5102(16)	5204(13)	1187(12)

atoms were included in calculated positions ($\mathrm{C}-\mathrm{H}=$ $0.96 \AA$) with fixed isotropic thermal parameters ($U_{\text {iso }}=$ $0.08 \AA^{2}$). The asymmetric unit contains a badly disordered molecule of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. One of the Cl atoms [$\mathrm{Cl}(1)$] has a reasonably well defined location but it was necessary to refine the second Cl atom as two separate components [$\mathrm{Cl}(2)$ and $\mathrm{Cl}(3)]$ each having a 50% site occupancy. The final difference Fourier map showed the highest peak to be $1.03 \mathrm{e}^{-3}$, this being in the vicinity of the disordered solvent molecule. Atomic scattering factors were taken from ref. [12]. Final atomic positional parameters for non-hydrogen atoms are given in Table 6.

Additional data available from the Cambridge Crystallographic Data Centre comprises H -atom coordinates, anisotropic thermal parameters, and remaining bond lengths and angles.

Acknowledgments

We thank the UK Science and Engineering Research Council for a research studentship for J.E.G., and the Robert A. Welch Foundation for a Grant (AA-1201) in support of the preparative work, which was carried out at Baylor University.

References and notes

1 In the complexes discussed in this paper rhodium atoms form with [nido-7, $\left.n-\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{9} \mathrm{R}_{2}^{\prime}\right]^{2--} \quad(n=8$ or 9$)$ anions closo-1,2-di-carba-3-rhodadodecaborane and closo-1,7-dicarba-2-rhodadodecaborane structures, respectively. In the formulae the carborane groups are designated as $\eta^{5}-\mathrm{C}_{2} \mathrm{~B}_{9} \mathrm{H}_{9} \mathrm{R}_{2}^{\prime}$ in order to emphasise their pentahapto ligand properties in which these nido-fragments
formally act as four electron donors. We therefore treat the cages in the products as nido-11-vertex ligands with the numbering as for an icosahcdron from which the twelfth vertex has been removed, in order to avoid a cumbersome labelling system.
2 (a) J.R. Fernandez, G.F. Helm, J.A.K. Howard, M.U. Pilotti and F.G.A. Stone, J. Chem. Soc., Dalton Trans., (1990) 1747; (b) N. Carr, M.C. Gimeno, J.E. Goldberg, M.U. Pilotti, F.G.A. Stone and I. Topaloǧlu, J. Chem. Soc., Dalton Trans., (1990) 2253; (c) J.E. Goldberg, J.A.K. Howard, H. Müller, M.U. Pilotti and F.G.A. Stone, J. Chem. Soc., Dalton Trans., (1990) 3055; (d) M.U. Pilotti, I. Topaloǧlu and F.G.A. Stone, J. Chem. Soc., Dalion Trans., (1991) 1355; (e) M.U. Pilotti, F.G.A. Stone and I. Topaloğlu, J. Chem. Soc., Dalton Trans., (1991) 1621; (f) J.E. Goldberg, D.F. Mullica, E.L. Sappenfield and F.G.A. Stone, J. Chem. Soc., Dalton Trans., (1992) 2693; (g) J.E. Goldberg and F.G.A. Stone, Polyhedron, 11 (1992) 2841; (h) J.C. Jeffery, F.G.A. Stone and I. Topaloǧlu, J. Organomet. Chem., in press.
3 M.U. Pilotti and F.G.A. Stone, J. Chem. Soc., Dalton Trans., (1990) 2625.

4 D.D. Devore, C. Emmerich, J.A.K. Howard and F.G.A. Stone, J. Chem. Soc., Dalton Trans., (1989) 797.
5 O. Koch, F. Edelmann and U. Behrens, Chem. Ber., 115 (1982) 1313.

6 S.A. Brew and F.G.A. Stone, Adv. Organomet. Chem., 35 (1993) 135.

7 D.G. Evans, J.A.K. Howard, J.C. Jeffery, D.B. Lewis, G.E. Lewis, M.J. Grosse-Ophoff, M.J. Parrott and F.G.A. Stone, J. Chem. Soc., Dalton Trans., (1986) 1723; N. Carr, J.R. Fernandez and F.G.A. Stone, Organometallics, 10 (1991) 2718.

8 J.A. Walker, C.B. Knobler and M.F. Hawthorne, Inorg. Chem., 24 (1985) 2688.
9 E.O. Fischer, E.W. Mcincke and F.R. Kreissl, Chem. Ber., 110 (1977) 1140; E.O. Fischer and G. Besl, Z. Naturforsch., B34 (1979) 1186; E.O. Fischer, J.K.R. Wanner, G. Müller and J. Reide, Chem. Ber., 118 (1985) 3311.
10 R. Usón and A. Laguna, Organomet. Synth., 3 (1986) 325.
11 shelxtl-pc, Siemens Analytical X-Ray Instruments.
12 International Tables for X-ray Crystallography, Kynoch Press, Birmingham, 1974, vol. 4.

[^0]: Correspondence to: Professor F.G.A. Stone.

 * This paper is dedicated to Professor M.F. Lappert on the occasion of his 65th birthday, and in gratitude for his long-standing friendship.
 ** Reference with asterisk indicates a note in the list of references.

[^1]: ${ }^{\text {a }}$ Chemical shifts (δ) in ppm, coupling constants in Hz , measurements in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ at ambient temperatures.
 ${ }^{\mathrm{b}}$ Hydrogen-1 decoupled, chemical shifts are positive to high frequency of $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$ (external). $\mathrm{R}=\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-4$.
 ${ }^{c}$ Hydrogen- 1 decoupled, chemical shifts are positive to high frequency of $85 \% \mathrm{H}_{3} \mathrm{PO}_{4}$ (external).
 ${ }^{d}$ Formed as a mixture with \mathbf{V}; peak assignments based on rel. int. (see text).
 ${ }^{\text {e }}$ Peaks marked with asterisk are due to minor isomer.
 ${ }^{\mathrm{f}}$ Formed as a mixture with IIIe. See footnote d and text.

